{VERSION 5 0 "IBM INTEL NT" "5.0" } {USTYLETAB {CSTYLE "Maple Input" -1 0 "Courier" 1 12 255 0 0 1 0 1 0 0 1 0 0 0 0 1 }{CSTYLE "2D Math" -1 2 "Times" 1 12 0 0 0 0 0 0 2 0 0 0 0 0 0 1 }{CSTYLE "2D Output" 2 20 "" 0 1 0 0 255 1 0 0 0 0 0 0 0 0 0 1 }{CSTYLE "" -1 256 "Geneva" 1 10 0 0 0 1 0 0 0 0 0 0 0 0 0 1 } {CSTYLE "" -1 257 "Geneva" 1 10 0 0 0 1 0 1 0 0 0 0 0 0 0 1 }{CSTYLE " " -1 258 "Geneva" 0 12 0 0 0 1 0 1 0 0 0 0 0 0 0 1 }{CSTYLE "" -1 259 "Geneva" 1 12 0 0 0 1 0 0 0 0 0 0 0 0 0 1 }{CSTYLE "" -1 260 "Geneva" 1 12 0 0 0 1 0 1 0 0 0 0 0 0 0 1 }{CSTYLE "" -1 261 "Geneva" 1 12 0 0 0 1 0 0 0 0 0 0 0 0 0 1 }{CSTYLE "" -1 262 "Geneva" 1 12 0 0 0 1 0 1 0 0 0 0 0 0 0 1 }{CSTYLE "" -1 263 "Geneva" 1 12 0 0 0 1 0 0 0 0 0 0 0 0 0 1 }{CSTYLE "" -1 264 "Geneva" 1 10 0 0 0 1 0 0 0 0 0 0 0 0 0 1 } {CSTYLE "" -1 265 "Geneva" 1 12 0 0 0 1 0 0 0 0 0 0 0 0 0 1 }{CSTYLE " " -1 266 "Geneva" 1 12 0 0 0 1 0 0 0 0 0 0 0 0 0 1 }{CSTYLE "" -1 267 "Geneva" 1 12 0 0 0 1 0 0 0 0 0 0 0 0 0 1 }{CSTYLE "" -1 268 "Geneva" 1 12 0 0 0 1 0 0 0 0 0 0 0 0 0 1 }{CSTYLE "" -1 269 "Geneva" 1 12 0 0 0 1 0 0 0 0 0 0 0 0 0 1 }{CSTYLE "" -1 270 "Geneva" 1 12 0 0 0 1 0 0 0 0 0 0 0 0 0 1 }{PSTYLE "Normal" -1 0 1 {CSTYLE "" -1 -1 "Geneva" 1 10 0 0 0 1 2 2 2 0 0 0 0 0 0 1 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 } {PSTYLE "Text Output" -1 2 1 {CSTYLE "" -1 -1 "Courier" 1 10 0 0 255 1 0 0 0 0 0 1 3 0 0 1 }1 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "Warni ng" 2 7 1 {CSTYLE "" -1 -1 "" 0 1 0 0 255 1 0 0 0 0 0 0 1 0 0 1 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "Error" 7 8 1 {CSTYLE "" -1 -1 " " 0 1 255 0 255 1 0 0 0 0 0 0 0 0 0 1 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "Maple Output" 0 11 1 {CSTYLE "" -1 -1 "" 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 }3 3 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "" 11 12 1 {CSTYLE "" -1 -1 "" 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 }1 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "Maple Plot" 0 13 1 {CSTYLE "" -1 -1 "" 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 }3 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "T itle" 0 18 1 {CSTYLE "" -1 -1 "" 1 18 0 0 0 0 0 1 1 0 0 0 0 0 0 1 }3 0 0 -1 12 12 0 0 0 0 0 0 19 0 }{PSTYLE "R3 Font 0" -1 256 1 {CSTYLE " " -1 -1 "Monaco" 1 9 0 0 255 1 2 2 2 0 0 0 0 0 0 1 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "R3 Font 2" -1 257 1 {CSTYLE "" -1 -1 "Monaco " 1 9 255 0 0 1 2 2 2 0 0 0 0 0 0 1 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 } {PSTYLE "R3 Font 3" -1 258 1 {CSTYLE "" -1 -1 "Geneva" 1 10 0 0 0 1 2 1 2 0 0 0 0 0 0 1 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "R3 Font 4 " -1 259 1 {CSTYLE "" -1 -1 "Geneva" 1 12 0 0 0 1 2 1 2 0 0 0 0 0 0 1 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }} {SECT 0 {EXCHG {PARA 18 "" 0 "" {TEXT 256 1 "\011" }{TEXT 257 4 "\011 \011\011\011" }{TEXT 258 40 "Least Squares - The Two Dimensional Case " }}}{EXCHG {PARA 0 "" 0 "" {TEXT 259 461 "Solving an over-determined \+ linear system A x = b is generally impossible, but\nfinding an x0 so \+ that A x0 is as close as possible to b leads to the concept of a\nleas t squares solution. One can see that such an x0 must satisfy the\nnor mal equations\n\011\011\011\011A_tr A x0 = A_tr b \nwhere A_tr is the transpose of the matrix A. Generically this system will\nhave a uniq ue solution. We use this worksheet to study this in the case of \nfit ting a set of points to a line.\n\n" }{TEXT 260 9 "Problem: " }{TEXT 261 109 "Find the best fitting straight line y = cx + d through the f ollowing points:\n \011\011\011\011(1,2), (1,3),(2,4), (3,5)\n" }} {PARA 0 "> " 0 "" {MPLTEXT 1 0 39 "pointlist := [[1,2],[1,3],[2,4],[3, 5]];" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%*pointlistG7&7$\"\"\"\"\"#7$ F'\"\"$7$F(\"\"%7$F*\"\"&" }}}{EXCHG {PARA 0 "" 0 "" {TEXT 262 9 "Solu tion:" }{TEXT 263 123 " The over-determined system here is \n\011\011 \0111 c + d = 2\n\011\011\0111 c + d = 3\n\011\011\0112 c + d = 4\n \011\011\0113 c + d = 5\n In matrix form: A x = b:\n" }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 13 "with(linalg):" }}{PARA 7 "" 1 "" {TEXT -1 80 "Wa rning, the protected names norm and trace have been redefined and unpr otected\n" }}}{EXCHG {PARA 256 "" 0 "" {TEXT 264 1 "\n" }}{PARA 0 "> \+ " 0 "" {MPLTEXT 1 0 38 "A := array([[1,1],[1,1],[2,1],[3,1]]);" }} {PARA 11 "" 1 "" {XPPMATH 20 "6#>%\"AG-%'matrixG6#7&7$\"\"\"F*F)7$\"\" #F*7$\"\"$F*" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 18 "x :=vector( [c,d]);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%\"xG-%'vectorG6#7$%\"cG% \"dG" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 23 "b := vector([2,3,4, 5]);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%\"bG-%'vectorG6#7&\"\"#\"\"$ \"\"%\"\"&" }}}{EXCHG {PARA 0 "" 0 "" {TEXT 265 86 "This step just con firms we've chosen A and b to have the right over-determined system." }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 19 "evalm(A &* x = b );" }}{PARA 11 " " 1 "" {XPPMATH 20 "6#/-%'vectorG6#7&,&%\"cG\"\"\"%\"dGF*F(,&F)\"\"#F+ F*,&F)\"\"$F+F*-F%6#7&F-F/\"\"%\"\"&" }}}{EXCHG {PARA 0 "" 0 "" {TEXT 266 31 " The normal equations N x = m :" }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 30 "N := evalm(transpose(A) &* A);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%\"NG-%'matrixG6#7$7$\"#:\"\"(7$F+\"\"%" }}}{EXCHG {PARA 0 "> \+ " 0 "" {MPLTEXT 1 0 30 "m := evalm(transpose(A) &* b);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%\"mG-%'vectorG6#7$\"#G\"#9" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 29 "x0 := evalm(inverse(N) &* m);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%#x0G-%'vectorG6#7$#\"#9\"#6F)" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 31 "line := x -> x0[1] * x + x0[2];" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%%lineGf*6#%\"xG6\"6$%)operatorG%&arrowGF(, &*&&%#x0G6#\"\"\"F19$F1F1&F/6#\"\"#F1F(F(F(" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 79 "plot(\{pointlist,line\},\n\011title = `Least Squar es Solution Vs. Points Connected`);" }}{PARA 13 "" 1 "" {GLPLOT2D 331 192 192 {PLOTDATA 2 "6'-%'CURVESG6$7&7$$\"\"\"\"\"!$\"\"#F*7$F($\"\"$F *7$F+$\"\"%F*7$F.$\"\"&F*-%'COLOURG6&%$RGBG$\"#5!\"\"$F*F*F=-F$6$7S7$$ !#5F*$!3MXXXXXXX6!#;7$$!3!pmmm\"p0k&*!#<$!3AIII!)3(**3\"FF7$$!3uKL$3UU#*R[pT5FF7$$!3WmmmT%p\"e()FJ$!3S%[[[$Q.u)*FJ7$$!3/nmm\"4m(G $)FJ$!3;HII![?vK*FJ7$$!3OLL$3i.9!zFJ$!3cKLL3Yg$y)FJ7$$!3fmm;/R=0vFJ$!3 _$RR*o\\Kz#)FJ7$$!3k++]P8#\\4(FJ$!3yOOO6EDhFJ7$$!3s%HaFJ$!3(>@@@15vj&FJ7$$!3]******\\$*4)*\\FJ$!3u\"== =3!\\)3&FJ7$$!3o******\\_&\\c%FJ$!3(Ffs7$$!3]^omm;zr)*!#?$ \"3)RUUUbFJ7$$\"3%4+++v+'oPFJ$\"3#ysssAG\"pgFJ7$$\"3UKL$eR<*fTFJ$\"3a opp%fnrc'FJ7$$\"3K-++])Hxe%FJ$\"38vssshl6rFJ7$$\"3!fmm\"H!o-*\\FJ$\"3h lmm\"\\xRi(FJ7$$\"3X,+]7k.6aFJ$\"3!eOO'))3]f\")FJ7$$\"3#emmmT9C#eFJ$\" 3%GRRR*G2$o)FJ7$$\"33****\\i!*3`iFJ$\"3qMOOhU?J#*FJ7$$\"3;NLLL*zym'FJ$ \"3M<:::*>\"f(*FJ7$$\"3'eLL$3N1#4(FJ$\"3M(pp>**)*)H5FF7$$\"3,pm;HYt7vF J$\"3uII!G&*QM3\"FF7$$\"37-+++xG**yFJ$\"3pOOO;mjK6FF7$$\"3gpmmT6KU$)FJ $\"3Cwvv!pA!*=\"FF7$$\"3qNLLLbdQ()FJ$\"3<)yyy1b%R7FF7$$\"3[++]i`1h\"*F J$\"3E==o+lA$H\"FF7$$\"3A-+]P?Wl&*FJ$\"3xXX&Hi#pW8FF7$$F;F*$\"#9F*-F76 &F9F=F:F=-%+AXESLABELSG6$Q!6\"Fh\\l-%&TITLEG6#%LLeast~Squares~Solution ~Vs.~Points~ConnectedG-%%VIEWG6$;FBF`\\l%(DEFAULTG" 1 2 0 1 10 0 2 9 1 4 2 1.000000 45.000000 45.000000 0 0 "Curve 1" "Curve 2" }}}}{EXCHG {PARA 0 "" 0 "" {TEXT 267 82 "Here's a singular example where the norm al equations don't have a unique solution." }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 39 "pointlist := [[1,1],[1,2],[1,3],[1,4]];" }}{PARA 11 " " 1 "" {XPPMATH 20 "6#>%*pointlistG7&7$\"\"\"F'7$F'\"\"#7$F'\"\"$7$F' \"\"%" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 37 "A:= array([[1,1],[ 1,1],[1,1],[1,1]]);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%\"AG-%'matrix G6#7&7$\"\"\"F*F)F)F)" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 23 "b \+ := vector([1,2,3,4]);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%\"bG-%'vect orG6#7&\"\"\"\"\"#\"\"$\"\"%" }}}{EXCHG {PARA 0 "" 0 "" {TEXT 268 92 " The normal equations N x = m :\nSince A had rank 1, N also has rank 1 \+ and is not invertible.\n" }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 30 "N := ev alm(transpose(A) &* A);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%\"NG-%'ma trixG6#7$7$\"\"%F*F)" }}}{EXCHG {PARA 0 "" 0 "" {TEXT 269 77 "Still th e equations N x = m have solutions - the normal equations always do ! " }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 30 "m := evalm(transpose(A) &* b); " }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%\"mG-%'vectorG6#7$\"#5F)" }}} {EXCHG {PARA 0 "" 0 "" {TEXT 270 128 "It is tempting to investigate wh at happens when the problem is nearly singular.\nWe change the first p oint to (1.000001,1.00001)." }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 44 "A:= \+ array([[1.000001,1],[1,1],[1,1],[1,1]]);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%\"AG-%'matrixG6#7&7$$\"(,++\"!\"'\"\"\"7$F-F-F.F." }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 30 "b := vector([1.000001,2,3,4]);" }} {PARA 11 "" 1 "" {XPPMATH 20 "6#>%\"bG-%'vectorG6#7&$\"(,++\"!\"'\"\"# \"\"$\"\"%" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 30 "N := evalm(tr anspose(A) &* A);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%\"NG-%'matrixG6 #7$7$$\"++?++S!\"*$\"(,++%!\"'7$F-\"\"%" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 30 "m := evalm(transpose(A) &* b);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%\"mG-%'vectorG6#7$$\"++-++5!\")$\"),++5!\"'" }}} {EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 29 "x0 := evalm(inverse(N) &* m) ;" }}{PARA 8 "" 1 "" {TEXT -1 36 "Error, (in inverse) singular matrix \n" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 7 "Digits;" }}{PARA 11 " " 1 "" {XPPMATH 20 "6#\"#5" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 13 "Digits := 40;" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%'DigitsG\"#S" } }}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 29 "x0 := evalm(inverse(N) &* \+ m);" }}{PARA 12 "" 1 "" {XPPMATH 20 "6#>%#x0G-%'vectorG6#7$$\"B+++++++ ++++++,++'!#E$!B++++++++++++++++'F+" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 0 "" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 0 "" }}}} {MARK "25 0 0" 0 }{VIEWOPTS 1 1 0 1 1 1803 1 1 1 1 }{PAGENUMBERS 0 1 2 33 1 1 }